博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
mxnet(gluon) 实现DQN简单小例子
阅读量:5294 次
发布时间:2019-06-14

本文共 4219 字,大约阅读时间需要 14 分钟。

参考文献

关于增强学习的基本知识可以参考第二个链接,讲的挺有意思的。DQN的东西可以看第一个链接相关视频。课程中实现了Tensorflow和pytorch的示例代码。本文主要是改写成了gluon实现

Q-learning的算法流程

2-1-1.png

DQN的算法流程

4-1-1.jpg

对于DQN的理解:

增强学习中需要学习的东西是Q-table,决策表。而针对于state space空间太大的情形,很难甚至不可能构建这个决策表。而决策表其实就是一种映射 (s,a)->R, 那么这种映射可以通过网络来构建,于是就有了DQN

下面来看代码

import mxnet as mx

import mxnet.ndarray as nd
import mxnet.gluon as gluon
import numpy as np
import mxnet.gluon.nn as nn
import gym

BATCH_SIZE=64                                             # 训练网络时的batchsize

LR=0.01                                                         # 权重更新的学习率
EPSILON=0.9                                                  # 每次以概率选择最有策略,有点类似于生物算法的思想
GAMMA=0.5                                                    # 计算q_target是下一个状态收益对当前的影响
TARGET_REPLACE_ITER=100                            # 保存网络参数,可以理解为上一次的映射,的频率
MEMORY_CAPACITY=1000                                # 历史决策
env = gym.make('CartPole-v0')                         # 调用OpenAI.gym构建的env
env = env.unwrapped
N_ACTIONS=env.action_space.n                       # 备选策略的个数
N_STATES = env.observation_space.shape[0]    # 状态向量的长度

# 定义所需要的网络,示例仅随意设置了几层

class Net(nn.HybridBlock):

     def __init__(self,**kwargs):
         super(Net, self).__init__(**kwargs)
         with self.name_scope():
             self.fc1 = nn.Dense(16, activation='relu')
             self.fc2 = nn.Dense(32, activation='relu')
             self.fc3 = nn.Dense(16, activation='relu')
             self.out = nn.Dense(N_ACTIONS)
     def hybrid_forward(self, F, x):
         x = self.fc1(x)
         x = self.fc2(x)
         x = self.fc3(x)
         actions_value = self.out(x)
         return actions_value

# 定义网络权重的拷贝方法。主要是因为DQN learning中采用off-policy更新,也就是说需要上一次的映射图,这可以使用网络上一次的权重保存,这个用以保存权重的网络只有前向功能,类似于查表,并不更新参数,直到满足一定条件时将当前网络参数再次存储

def copy_params(src, dst):

     dst.initialize(force_reinit=True, ctx=mx.cpu())
     layer_names = ['dense0_weight', 'dense0_bias','dense1_weight','dense1_bias',
                  'dense2_weight','dense2_bias','dense3_weight','dense3_bias']
     for i in range(len(layer_names)):
         dst.get(layer_names[i]).set_data(src.get(layer_names[i]).data())

# 定义DQN类,包含网络、策略选择、保存记录等

class DQN(object):

     def __init__(self):
         self.eval_net, self.target_net = Net(), Net()
         self.eval_net.initialize()
         self.target_net.initialize()
         x=nd.random_uniform(shape=(1,N_STATES))
         _ = self.eval_net(x)
         _ = self.target_net(x)                # mxnet的延迟初始化特性
         self.learn_step_counter = 0
         self.memory_counter = 0
         self.memory = np.zeros(shape=(MEMORY_CAPACITY, N_STATES*2+2))
         # 每一行存储的是当前状态,选择的action, 当前的回报, 下一步的状态
         self.trainer = gluon.Trainer(self.eval_net.collect_params(), 'sgd',\
                                     {'learning_rate': LR,'wd':1e-4})
         self.loss_func = gluon.loss.L2Loss()
         self.cost_his=[]
     def choose_action(self, x):
         if np.random.uniform()<EPSILON:
             # EPSILON的概率选择最可能动作
             x = nd.array([x])
             actions_value = self.eval_net(x)
             action = int(nd.argmax(actions_value, axis=1).asscalar())
         else:
             action = np.random.randint(0, N_ACTIONS)
         return action
     def store_transition(self,s,a,r,s_):
         # 存储历史纪录
         transition = np.hstack((s,[a,r],s_))
         index = self.memory_counter % MEMORY_CAPACITY
         # 主要是为了循环利用存储空间
         self.memory[index,:] = transition
         self.memory_counter += 1
        
     def learn(self):
         if self.learn_step_counter % TARGET_REPLACE_ITER==0:
             # 每学习一定间隔之后,将当前的状态
             copy_params(self.eval_net.collect_params(), self.target_net.collect_params())
            
         self.learn_step_counter += 1
        
         sample_index = np.random.choice(MEMORY_CAPACITY, BATCH_SIZE)
         # 随机选择一组状态
         b_memory = self.memory[sample_index,:]
       
         b_s = nd.array(b_memory[:,:N_STATES])
         b_a = nd.array(b_memory[:,N_STATES:N_STATES+1])
         b_r = nd.array(b_memory[:,N_STATES+1:N_STATES+2])
         b_s_= nd.array(b_memory[:,-N_STATES:])
         with mx.autograd.record():
             q_eval = self.eval_net(b_s) # 预估值
             with mx.autograd.pause():
                 q_next = self.target_net(b_s_) # 历史值 batch x N_ACTIONS
             q_target = b_r + GAMMA*nd.max(q_next, axis=1)
             loss = self.loss_func(q_eval, q_target)
        
         self.cost_his.append(nd.mean(loss).asscalar())
         loss.backward()
         self.trainer.step(BATCH_SIZE)
        
     def plot_cost(self):
         import matplotlib.pyplot as plt
         plt.plot(np.arange(len(self.cost_his)), self.cost_his)
         plt.ylabel('Cost')
         plt.xlabel('training steps')
         plt.show()

# 训练

dqn = DQN()
for i_episode in range(500):
     s = env.reset()
     while True:
         env.render()
         a = dqn.choose_action(s)
         s_, r, done, info = env.step(a)# 到达的状态,收益,是否结束 

        x,x_dot, theta, theta_dot = s_

         r1 = (env.x_threshold - abs(x))/env.x_threshold - 0.8
         r2 = (env.theta_threshold_radians - abs(theta))/env.theta_threshold_radians-0.5
         r = r1 + r2

        dqn.store_transition(s,a,r,s_)

         if dqn.memory_counter > MEMORY_CAPACITY:
             dqn.learn()

         if done:

             break
        
         s = s_
dqn.plot_cost() 

loss曲线

训练的loss似乎并没有收敛,还在找原因

ps. 第一次使用open live writer写博客,体验很差!!!!!我需要公式、代码和图片的支持。。。。还在寻找中

转载于:https://www.cnblogs.com/YiXiaoZhou/p/8145499.html

你可能感兴趣的文章
大小写转换
查看>>
AJAX
查看>>
maven项目启动报错ContainerBase.addChild: start
查看>>
笔记2
查看>>
HCNP学习笔记之ICMP协议与ping原理以及用Python实现ping
查看>>
字符函数
查看>>
身份证号码验证 类
查看>>
oracle listagg函数、lag函数、lead函数 实例
查看>>
mongodb测试类
查看>>
jvm 内存溢出 在myeclipse中加大tomcat的jvm内存 java.lang.OutOfMemoryError: PermGen space
查看>>
ExtAspNet v3.1.8 发布了
查看>>
(分享)C# 绘制统计图(柱状图, 折线图, 扇形图)
查看>>
html学习笔记二
查看>>
CentOS 6.6安装配置CVS
查看>>
测试工具文件4. 数据分析——定义analyseXML
查看>>
【转载】递归算法详解
查看>>
poj1852 Ants
查看>>
数据处理之文件读写
查看>>
Openssl生成证书
查看>>
工具使用及环境搭建
查看>>